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SU(2) and SU(1,1) Algebra Eigenstates: A Unified 
Analytic Approach to Coherent and Intelligent 
States 

C o n s t a n t i n  B r i f  1 

Received December 31, 1996 

We introduce the concept of algebra eigenstates which are defined for an arbitrary 
Lie group as eigenstates of elements of the corresponding complex Lie algebra. 
We show that this concept unifies different definitions of coherent states associated 
with a dynamical symmetry group. On the one hand, algebra eigenstates include 
different sets of Perelomov's generalized coherent states. On the other hand, 
intelligent states (which are squeezed states for a system of general symmetry) 
also form a subset of algebra eigenstates. We develop the general formalism and 
apply it to the SU(2) and SU(1,1) simple Lie groups. Complete solutions to the 
general eigenvalue problem are found in both cases by a method that employs 
analytic representations of the algebra eigenstates. This analytic method also 
enables us to obtain exact closed expressions for quantum statistical properties 
of an arbitrary algebra eigenstate. Important special cases such as standard 
coherent states and intelligent states are examined and relations between them 
are studied by using their analytic representations. 

1. INTRODUCTION 

Coherent states (CS) associated with various Lie groups have been 
successfully used in recent decades in many problems of quantum physics 
(Klauder and Skagerstam, 1985; Perelomov, 1986; Zhang et  al., 1990). There 
are three different group-theoretic approaches to CS (Zhang et  al., 1990). 
These approaches follow three possible definitions of the familiar Glauber 
CS let) of a harmonic oscillator (Glauber, 1963). Perelomov (1972, 1977), 
Gilmore (1972, 1974), and Rasetti (1975) have developed the formalism in 
which CS are generated by the action of group elements on a reference state 
of a group representation Hilbert space. In the second approach one deals 
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with eigenstates of a lowering group generator (Barut and Girardello, 1971). 
The third definition of CS is related to the optimization of uncertainty relations 
for Hermitian generators of a group (Schr0dinger, 1926). States that minimize 
uncertainty relations are called intelligent states (IS) (Aragone et  al., 1974, 
1976; Ruschin and Ben-Aryeh, 1976; Vanden-Bergh and DeMeyer, 1978) or 
minimum-uncertainty states. Different definitions coincide only in the special 
case of the Heisenberg-Weyl group (Weyl, 1950) that is the dynamical 
symmetry group of a quantized harmonic oscillator; then one obtains the 
Glauber CS Io 0 (Glauber, 1963). For more complicated groups, e.g., for SU(2) 
and SU(1,1), the different approaches lead to distinct states. 

Relations between various sets of coherent and intelligent states have 
been studied in a number of recent works (Wodkiewicz and Eberly, 1985; 
Trifonov, 1994; Brif and Ben-Aryeh, 1994a). In the present paper we continue 
and extend this study by developing a group-theoretic formalism that provides 
a unified description of different types of coherent and intelligent states. We 
introduce the concept of algebra eigenstates (AES), which are defined for an 
arbitrary Lie group as eigenstates of elements of the corresponding complex 
Lie algebra. This general approach incorporates in a simple way the three 
different definitions mentioned above. Different sets of Perelomov's CS asso- 
ciated with a Lie group can be equivalently defined as the AES for this 
group. The IS for Hermitian generators of a group also form a subset of the 
AES. The algebra-eigenstate formalism enables us to use powerful analytic 
methods for treating different types of states in a unified way. Recently, we 
have also considered (Brif, 1996) the two-photon AES, which provide a 
unified analytic approach to single-mode squeezing. Similar ideas have been 
also discussed recently by Puri and Agarwal (1996) and by Trifonov 
(1996a, b). 

In this work we apply the general formalism to the SU(2) and SU(1,1) 
simple Lie groups. We use analytic representations based on the standard 
sets of Perelomov's CS for these groups. In the SU(1,1) case an alternative 
analytic representation based on the Barut-Girardello states (Barut and Girar- 
dello, 1971) is also used. The eigenvalue equation that determines the AES 
is converted by means of an analytic representation into a linear homogeneous 
differential equation. Solving this equation, we obtain the complete solution 
of the general eigenvalue problem. Then the theory of analytic functions is 
applied for studying quantum statistical properties of the AES and relations 
between their subsets. 

2. THE GENERAL THEORY OF ALGEBRA EIGENSTATES 

2.1. Definitions 

Let G be an arbitrary Lie group and T its unitary irreducible representa- 
tion acting on the Hilbert space ~ .  Let Y be the complex Lie algebra of the 
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group G (in what follows we will call algebra the complex extension of the 
real algebra, i.e., the set of all linear combinations of elements of the real 
algebra with complex coefficients). If we choose a basis {Yl, Y2 . . . . .  yp} for 
the p-dimensional Lie algebra Y, then an element of the complex algebra can 
be written as the Euclidean scalar product in the p-dimensional vector space, 

(~'Y) = 131Yl + 132Y2 + "'" + 13pYp (2.1) 

where 131, 132 . . . . .  13p are arbitrary complex coefficients. Then the AES are 
defined by the eigenvalue equation 

(/$.y)l*(h,  [$)) = hlW(k,  [~)), I~(h, 13)) E ~ (2.2) 

Admissible values of [$ and h depend on the structure of the group and will 
be determined for all particular situations that will be considered in the text. 
A special case of the eigenvalue equation (2.2) is the time-independent 
Schr6dinger equation for Hamiltonians which are linear combinations of 
group generators. However, we will see that apart from this special case, the 
eigenvalue equation (2.2) contains other important cases and has a fundamen- 
tal meaning in the theory of coherent and intelligent states. 

2.2. Generalized Coherent States 

Now we turn back to the Perelomov definition of the generalized CS. 
By choosing a fixed normalized reference state Iqto) ~ ~ ,  one can define 
the system of states { I~g)}, 

I~g) = r(g)l~o), g ~ G (2.3) 

which is called the coherent-state system. The isotropy (or maximum-stability) 
subgroup H C G consists of all the group elements h that leave the reference 
state invariant up to a phase factor, 

T(h)l~0) = ei4'(h)lXIro), lei4'(h)l = 1, h E H (2.4) 

For every element g ~ G, there is a unique decomposition of g into a product 
of two group elements, one in H and the other in the quotient (or coset) 
space G/H, 

g = l lh ,  g ~ G, h ~ H, l l  ~ G/H (2.5) 

It is clear that group elements g and g' with different h and h' but with the 
same ~ produce coherent states which differ only by a phase factor: I~g) = 
ei~lx~g,), where 8 = ~b(h) - ~b(h'). Therefore a coherent state I~n) is deter- 
mined by a point f l  = l'l(g) in the quotient space GIH. 

One can see from this group-theoretic procedure for the generation of 
the CS that the choice of the reference state I~o) firmly determines the 
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structure of the coherent-state set. Different choices of the reference state 
give different sets of the CS. An important class of coherent-state sets corres- 
ponds to the quotient spaces G/H, which are homogeneous K~hlerian mani- 
folds. Then GIH can be considered as the phase space of a classical dynamical 
system, and the mapping f l  ---) I~t~)(~tll is the quantization for this system 
(Berezin, 1975). The usually used sets of the CS (the standard sets, as we 
refer to them) correspond to the cases when an extreme state of the representa- 
tion Hilbert space (e.g., the vacuum state of an oscillator or the lowest spin 
state) is chosen as the reference state (Zhang et al., 1990). In general, this 
choice of the reference state leads to the sets consisting of states with proper- 
ties closest to those of classical states (Perelomov, 1986). 

The isotropy subalgebra X is defined as the set of elements {x}, x ~ Y, 
such that 

xl~0) = hl~0) (2.6) 

where X is a complex eigenvalue. By acting with T(g) on both sides of 
equation (2.6), we obtain 

T(g)xT-l(g)T(g)l~o) = kT(g)l~o) (2.7) 

This leads to the eigenvalue equation 

ylXItg) = king) (2.8) 

where IWg) = T(g)lW0) is a coherent state, and y = T(g)xT-l(g) is an element 
of the algebra Y We see that, for nontrivial X, Perelomov's generalized CS 
IWg) can be defined as the AES, and a specific set of the CS is obtained for 
the appropriate choice of the parameters 13's. More precisely, let a state IW(X, 
I~)) belong to a specific set of the CS corresponding to the reference state 
IW0) that satisfies equation (2.6). Then the parameters 13's must satisfy the 
condition (13 "y) = T(g)xT-l(g), Vg E G. Note that the definition of the AES 
does not depend explicitly on the choice of the reference state IW0). Hence 
it is possible to treat the CS defined as the AES in a quite general way, 
regardless of the set to which they belong. 

2.3. Analytic Representations 

An important property of the generalized CS is the identity resolution 

[ dlJ,(~) I~n)(~nl  = I (2.9) 

where I is the identity operator in the Hilbert space ~ ,  and d~(l'l) is the 
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invariant measure in the homogeneous quotient space GIH. Then any state 
IV) ~ ~ can be expanded in the coherent-state basis I~o), 

IXI t) = [ dp,(['l) f(l~)lXltn) (2.10) 

wheref(f l)  = (~nl~) ,  and 

(xlrl~) = [ dlx(fI) if(~)12 < oo (2.11) 

Now, let us represent all the AES in the standard coherent-state basis. 
In what follows we will consider only the simplest cases in which the quotient 
space GIH corresponding to the standard set is a homogeneous K~lerian 
manifold that can be parametrized by a single complex number ~, so we 
write the standard generalized CS I~n) in the form I~). Then equation (2.10) 
reads for the AES 

IV(h, [3)) = f dlx(g) f(k, 13; ~*)1~) (2.12) 

The function f(X, 13; g) = (~*I~t'(X, 13)) can be factorized as f(X, 13; ~) = 
~t(g)A(h, 13; ~). Here ~t(g) is a normalization factor such that A(X, 13; ~) is 
an analytic function of ~ defined on the whole complex plane or on part of 
it. Such analytic representations are well studied (Fock, 1928; Bargmann, 
1961; Segal, 1962) for the standard coherent-state bases of the simplest Lie 
groups (Perelomov, 1986). In these simplest cases the elements of the Lie 
algebra act in the Hilbert space of analytic functions as linear differential 
operators. Then the eigenvalue equation (2.2) is converted into a linear 
homogeneous differential equation. Solving it, we obtain the analytic func- 
tions A(k, 13; ~) representing the AES IV(h, 13)) in the standard coherent- 
state basis I[). The requirement of the analyticity provides us with the domain 
of admissible values of X and 13. The knowledge of the function A(X, 13; [) 
enables us to calculate properties of the corresponding state. In this paper 
we will use these analytic representations for finding the expansion of the 
AES in the orthonormal basis of the representation Hilbert space, including 
the explicit calculation of the normalization factor. We also will demonstrate 
how this analytic method can be used for obtaining exact analytic expressions 
for some expectation values over the AES. 

2.4. Intelligent States 

The standard set of Perelomov's CS is a particular case of the wide 
system of the AES. Other particular cases of the AES are the sets of the 
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ordinary and generalized IS. Any two quantum observables (Hermitian opera- 
tors in the Hilbert space) A and B obey the Schr&linger-Robertson uncer- 
tainty relation 

(AA)Z(AB) 2 _> 42(1([A, B])t 2 + 40"A2S) (2.13) 

where the variance of A is (AA) 2 = (,42) - (,4) 2, (AB) 2 is defined similarly, 
the covariance of A and B is traS = �89 + BA)  - (A)(B), and the expectation 
values are taken over an arbitrary state in the Hilbert space. When the 
covariance of A and B vanishes, gas = 0, the Schrtdinger-Robertson uncer- 
tainty relation is reduced to the Heisenberg uncertainty relation, 

(/~k~)2(~k~) 2 ~ �88 B])I 2 (2.14) 

The ordinary IS (Aragone et al., 1974, 1976) provide an equality in the 
Heisenberg uncertainty relation (2.14), while the generalized IS (Trifonov, 
1994) do so in the Schrtdinger-Robertson uncertainty relation (2.13). It is 
clear that the ordinary IS form a subset of the generalized IS. The generalized 
IS for operators A and B are determined from the eigenvalue equation (Trifo- 
nov, 1994; Purl, 1994) 

0qA + iB)lk, "q) = klk, ~q) (2.15) 

where the parameter "q is an arbitrary complex number, and h is a complex 
eigenvalue. For the particular case of real "q, the eigenvalue equation (2.15) 
determines the ordinary IS for operators A and B. Then the equation can be 
written in the form (Jackiw, 1968) 

(A + i~/B)IX, ~/) = XlX, ~) (2.16) 

where "y is a real parameter. By comparing equations (2.15) and (2.16) with 
equation (2.2), we see that the IS for any two Hermitian group generators 
form a subset of the AES of the group. Eigenstates of a lowering group 
generator (Barut and Girardello, 1971; Dodonov et al., 1974; Hillery, 1987, 
1989; Agarwal, 1988; Bu~ek, 1990; Brif and Ben-Aryeh, 1994b; Brif, 1995), 
being a special case of the IS, are a simple example of the AES. 

The generalized IS for position and momentum of a harmonic oscillator 
coincide (Trifonov, 1994) with the canonical squeezed states (Stoler, 1970, 
1971; Yuen, 1976), and they also are referred to as the correlated coherent 
states (Dodonov et aL, 1980). The concept of squeezing is naturally related 
also to the IS associated with more complicated Lie groups (Wodkiewicz 
and Eberly, 1985; Hillery, 1987, 1989; Nieto and Truax, 1993; Trifonov, 
1994). At the last years there is a great interest in the IS (Wodkiewicz and 
Eberly, 1985; Agarwal and Puri, 1990; Bergou et al., 1991; Hillery and 
Mlodinow, 1993; Nieto and Truax, 1993; Trifonov, 1994; Brif and Ben- 
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Aryeh, 1994a; Yu and Hillery, 1994; Prakash and Agarwal, 1994, 1995; Gerry 
and Grobe, 1995; Purl and Agarwal, 1996; Luis and Pe~ina, 1996; Brif and 
Ben-Aryeh, 1996; Brif and Mann, 1996a, b), especially for generators of the 
SU(2) and SU(1,1) Lie groups. The SU(2) and SU(I,1) IS have been recently 
shown to be very useful for improving the accuracy of interferometric mea- 
surements (Hillery and Mlodinow, 1993; Brif and Ben-Aryeh, 1996; Brif and 
Mann, 1996a, b). 

The investigation of the AES yields the fullest information on the IS 
for generators of the corresponding Lie group. This information is of great 
importance in quantum optical applications of the IS. The most convenient 
way for examining different subsets of the AES and the relations between 
them is the construction of the analytic representation of the AES in the 
standard coherent-state basis. Actually, the idea to use such an analytic 
representation has been recently applied (Trifonov, 1994; Brif and Ben-Aryeh, 
1994a) to the SU(1,1) IS. As recently shown by Brif and Mann (1996a, b), 
the use of these representations is a powerful method for obtaining closed 
analytic expressions for various properties of the IS. In the present work the 
analytic representations are obtained for arbitrary AES of the SU(2) and 
SU(1,1) Lie groups. These representations are used for finding the expansion 
of the AES in the corresponding orthonormal basis, including the calculation 
of exact analytic expressions for the normalization factor and for some quan- 
tum expectation values. 

3. THE SU(2) ALGEBRA EIGENSTATES 

In this section we discuss the AES for the SU(2) group, which is the 
most elementary compact non-Abelian simple Lie group. The corresponding 
Lie algebra is spanned by the three operators {Jl, J2, J3}, 

[Jl, J21 =/J3, [J2, J3] = / J l ,  [J3, Jd  =/J2  (3.1) 

It is convenient to use raising and lowering operators J,_ = J t  + i J2 ,  which 
satisfy the following commutation relations: 

[J3, J~-] = -+C*, [J_, 1+] = -2-/3 (3.2) 

The Casimir operator j2 = j2 + j2 -F j2 for any unitary irreducible representa- 
tion is the identity operator times a number: j2 = j( j  + 1)I. Thus a representa- 
tion of the SU(2) is determined by a single number j that can be a positive 
integer or half-integer: j = 1/2, 1, 3/2, 2 . . . . .  The representation Hilbert 
space is spanned by the orthonormal basis I j, m) (m = - j ,  - j  + 1 . . . . .  j 
- l,j). 
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3.1. The Standard Coherent-State Basis and Related Analytic 
Representation 

The standard set of  the SU(2) CS is obtained for the lowest state I j,  - j )  
chosen as the reference state. The isotropy subgroup H = U(1) consists of 
all group elements h of the form h = exp(iSJ3). Thus hi j, - j )  = exp(-i~j)lj, 
- j ) .  The quotient space is SU(2)/U(1) (the sphere), and the standard coherent 
state is specified by a unit vector 

n = (sin 0 cos ~p, sin 0 sin ~p, cos 0) (3.3) 

Then an element f l  of  the quotient space can be written as 

11 - D(O = exp(~/§ - ~*J_) (3.4) 

where ~ = -(O/2)e -i'P. The standard SU(2) CS are given by 

I j,  [) = O(OIj, - j )  
= exp(F~J+ - ~*J_)lj, - j )  (3.5) 
= (1 + 1412) -j exp(4J+)lj, - j )  

where 4 = (~1~1) tanl~/ = -tan(OI2)e -i'p. The parameter 4 can acquire any 
complex value. The expansion of  the I j,  ~) states in the orthonormal basis is 

I j, 4) = (1 + 1412) -y ~ (2j)! 4J+mlj, m) (3.6) 
m=-y ( j +  m ) ! ( j - m ) !  

The SU(2) CS are normalized, but they are not orthogonal to each other: 

(j, ~llj, 42) = (1 + 14112)-J(1 + 14212)-J(I -4- 4~42) 2j (3.7) 

The identity resolution is 

f dI.L(j, 4) I j ,  4)/Q, 41 I, dla.(j, 4) (3.8) 
2j + 1  d24 

_'tr (1 -4-1412) 2 

For any state IXI t) = Yflm=-j Cmlj, m) in the Hilbert space, one can construct 
the analytic function 

J r (2j)! f(4) (1 + 1412)j(j, 4"1")  ~ Cm| 11/2 
q 

= = 4 J  + m  

. ,=- j  LU + m)! ( j  - m)!J 
(3.9) 

Then the state I~) can be expanded in the standard coherent-state basis: 

I'I') = I dtLU, 4) (1 + I~12)-~(4*)lj, 4) (3.10) 

( dlx(J, 4) (1 + 1412)-2Jlf(~*)12 < 00 (3.11) 
3 
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The coherent state I j ,  4o) is represented by the function 

~;(J, 40; 4) = (1 + 14i2)s(j, 4*l j,  4o) = (1 + [4OI2)-J(1 + 404) 2j 
(3.12) 

The operators J_+ and J3 act in the Hilbert space of analytic functions f(4) as 
first-order differential operators 

d d d 
J+ = -4 2 ~ + 2j4, J- = d-~ ' ,/3 = 4 ~ - j (3.13) 

3.2. The General Case 

The eigenvalue equation for the SU(2) AES is 

(~  " / ) ] j ,  )k, ~> ~--- (13111 + [3212 "3 L [3313)lj, •, ~> = XIj, )g, ~> 
(3.14) 

By introducing the analytic function 

A(j, h, [3; 4) = (1 + 1412)j(j, 4*l j,  h, ~) (3.15) 

we derive the differential equation 

d . 
[[3+ "4- ~34 -- 13-4 2] ~'~ A(j, ?t, [3; 4) + [2j[3-4 - J[33 - ~.]A(.j, k, ~; 4) = 0 

(3.16) 

where we have defined 13+ = ([3~ -+ i132)/2. Let us also define 

b = ,/[32 + 132 + 132 (3.17) 

Admissible values of 13 and k are determined by the requirement that the 
function A(j, k, 13; 4) must be a polynomial of  the form (3.9), i.e., it should 
be normalized and analytic in the whole 4 plane. We will see that for any 
choice of 13, there exists at least one such solution of equation (3.16), i.e., 
each algebra element (13" J) has at least one eigenstate in the Hilbert space 
of  any i~educible representation of SU(2). In the general case b ~s 0, each 
algebra element has 2j + 1 eigenstates with symmetric spectrum: ~. = -jb, 
( - j  + 1)b . . . . .  (j - l)b, jb. In the degenerate case b = 0, each algebra 
element has only one eigenstate with eigenvalue ~, = 0. All these degenerate 
eigenstates are the standard CS. 

We start by considering the general case b =/: 0. For [3+ :/: 0, the solution 
of equation (3.16) reads 

A(j, )t, [3; 4) = 3r 1 - "r-4)J+m~ 1 - "r+4) j-m~ (3.18) 
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where 3q is a normalization factor, and we use the following notation: 

T• = (f3t - ff32)/(~33 +- b) (3.19) 

mo = h/b (3.20) 

The condition of the analyticity for the function A(C) requires that mo can 
take only the values 

mo = - j , - j  + 1 . . . . .  j -  1 , j  (3.21) 

This condition means that the SU(2) AES have the discrete spectrum h = mob. 
We can compare the function A(j, h, 13; C) of equation (3.18) with the 

function $;(j, Co; 4) of  equation (3.12), which represents the standard coherent 
state I j ,  Co). We find that the algebra eigenstate I j,  h, 13) belongs to the 
standard set of the CS when mo = - j .  Then ~o = -'r;_, respectively. The 
normalization factor in this case is identified as ,N" = (1 + I~01z) zj. For 
example, we can choose 13 to be a unit vector 13 = n = (sin 0 cos q~, sin 0 
sin q~, cos 0), and mo = - j .  Then 

s i n 0 e .  (o) 
cos 0 + 1 tan e -i'p (3.22) 

This means that the standard CS form a subset of  the AES with the correspond- 
ing eigenvalue equation 

[(sin 0 cos ~0)J1 + (sin 0 sin ~P)J2 + (cos 0)J3]lj, Co) = - j l j ,  Co) (3.23) 

This result can be found by acting with D(~o) on both sides of the equation 
J31j, - j )  = - j l j ,  - j>. 

3.3. The Expansion in the Orthonormal Basis and Quantum Statistics 

The decomposition of  the AES [j, h, 13) over the orthonormal basis can 
be obtained by expanding the function A(j, h, [3; C) of  equation (3.18) into 
a power series in C. This can be done by using the generating function for 
the Lagrange polynomials g(~'a)(u, v) (Erdtlyi et al., 1953, Vol. 3, Section 
19.11; Srivastava and Manocha, 1984, Sections 1.11, 8.5): 

(1 - uO-~(1 - vO -~ = ~ gt,,'~'l~)(u, v)C" (3.24) 
n=O 

The Lagrange polynomials are related to the more familiar Jacobi polynomials 
/x,~'l~)(x) via the relation (Srivastava and Manocha, 1984, Section 8.5) 

g,.o,.,(u, v ) =  (v - + v) (3.25) 
\ u  - v~ 
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Thus one obtains the following generating function for the Jacobi 
polynomials: 

( 1 -  u~)~'(1-  v g ) ' :  ~ ( v -  u)"P~-n"-~)( u + vlg~ (3.26) 
~=o \ u  - v /  

Using this expression, we obtain the power series for the function A(j, h, 
It; g) of equation (3.18): 

A(j, k, It, 4) = 3q-t/2 ~ ~+~0~-m'-~-m)(x)(K~) i+m (3.27) 
rn=-j 

where we have defined 

K = X+ - -  "r_ = 2b/(13t + i~2) (3.28) 

x = ( r -  + %)l(x_ - %) = f~jb (3.29) 

The series (3.27) is finite due to the fact that 

P~,+~o-"J-~o-")(x) = 0 for n > 2j (3.30) 

Comparing the expansion (3.27) with the general formula (3.9), we find the 
decomposition of the AES over the orthonormal basis: [ ]o 

~ (j + m)! (j - m)! 
I j, k, P) m=-~ (2j)! ~-m'-~'-m>(x)KJ+~lj, m) 

(3.31) 

The normalization factor is given by 

2: n! (2j - n)! ip~in+rao_aj_rao_n)(X)12t n (3.32) 3 q = 2  ~ j ~  
n=O 

where t = IKI 2. The summation in (3.32) can be formally continued up to 
infinity because all the terms with n > 2j vanish. Then we can use the 
summation theorem for the Jacobi polynomials [Srivastava and Manocha, 
1984, Section 2.3, equations (60), (62)], which can be written in the form 

~ n ! F ( i z + v +  l - n )  I/~-",'-~)(X)12t~ 
~=0 F(Iz + v + 1) 

for I~ + v >- 0. Here, F(a, b; c; z) is the hypergeometric function, and we 
have defined 

S_. = 1 + Ix _. 112t/4 = 1 + I'r.~l 2 (3.34) 



1 ~ 2  B ~  

If p, and v are nonnegative integers, we can use the relation between the 
hypergeometric function and the Jacobi polynomials (Erd6lyi et al., 1953, 
Vol. 2, Section 10.8), which can be expressed in the form 

/7(--I.1,, --1); --pt, - -  V; Z) = ( - - 1 )  n I.l,! 17! 
(~ + v)! 
- -  P < ~ - ~ - ' - l ' ~  - 2 z ) ,  

n = min(l~, v) (3.35) 

Therefore, we obtain the closed expression for the normalization factor 

Ar = (_l)J_lmo,sJ++~sJ_mo (j + mo)! (j - too)! at-2j-lo){1 2t / 
�9 j _ . o  - ( 2 j ) !  / 

(3.36) 

It can be easily verified that for m o =  -+j, these formulas reduce to the 
corresponding results for the standard coherent state I j,  C0) with C0 = 
-a'~, respectively. 

The above analytic expressions can be used for calculations of quantum 
statistical properties of the SU(2) AES. We demonstrate how such a calculation 
can be performed by considering moments of  the generator J3. By using the 
property J31j, m) = mlj,  m) and formula (3.32), we can express moments of 
-/3 over the AES as derivatives of d~ with respect to t: 

t bar 
( J 3 )  - -  d~ r 0 t  J (3.37) 

t2oz$f  t O N  ( ~ O d f ~  z 
( ' ~ J 3 ) 2  - -  d~ r 0-'-~- q- d~ r Ot Ot ] (3.38) 

By using the formula (Erd61yi et al., 1953, Vol. 2, Section 10.8) 

dPC:")(x) _ n + Ix + v + 1 

dr  2 
P~-~ '"+ I)(x) (3.39) 

and the differential equation for the Jacobi polynomials, we obtain exact 
analytic expressions for the moments of  J3: 

(J3) = j Y  + mo(S+ - S_)  ( j  + Imol)Yt D, 
s 3 -  s ~ s ~  

S+ - 1 S_ - 1 (j2__ m2)y2 t 
(Zd3): = (j  + m o ) -  + (j  - , n o ) ~  + 

S 2 S 2- ( S 3 -  - t )S2S 2- 

(3.40) 
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+ (J + Imol)t ( S+S-Y2 ) 
$3+S~ kS+S_ - t + 2jY2 + Z ~ - 

Here, we have introduced the following notation: 

Y=S+S_ - s + - s _  

z = s2+(1 - s_ )  + s2_(1 - s+) 

(j + Imol)2y2t 2 ~-~2 
$4+ SL (3.41) 

(3.42) 

(3.43) 

Imol < j (3 .44)  

For m0 = +--j, we have f~ = 0, and then we recover the known results for 
the SU(2) CS (Wodkiewicz and Eberly, 1985). The expressions for (J3) and 
(&/3) 2 are significantly simplified in the case Y = 0, which means 

(131 - i132) 2 
l'r+'r_l = I <):~ . ~ - (~  ~ -  = I (3.45) 

This condition is satisfied in the important case 13~ = a132, where a is any 
real number (this includes the case when 13t or 132 vanishes). Then we obtain 

h - I  
(J3) - - -  mo (3.46) 

h + l  

_ 2jh 2(j + Imol)h2t 
(A/3)2 (h + 1) 2 (h + 1) 4 (3.47) 

where 

h = la'-I 2 =  1/1%12 (3.48) 

3.4.  S o m e  Spoeia l  Cases  

For 13+ = 0 and 133 #: 0, we obtain x_ ---) oo, so we cannot use formula 
(3.18). In this case the solution of equation (3.16) is 

A(j, k, 13; 0 = d~-v2~J+~( 1 - a',,~) j-~~ (3.49) 

where % = 131/133 and mo = h/133. The condition of the analyticity requires 
that m0 can take only the discrete values (3.21). The results of Section 3.3 
cannot be used in this special case, but corresponding expressions can be 
obtained by expanding the function (3.49) into power series. We find 

J [ ~  + m ) ! ]  .n ( - ' r+ )m-m~ ) 
I j ,  x, g )  = : : - , ,2  ~ _ (3 .50)  

m=mo m)! l (m -- mo)! 

(j  + too)! ~O,~o)(21.r + l )  
- ( j - -  ,no)! 

(3.51) 
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For mo = - j ,  the function (3.49) represents the standard coherent state I j ,  
Co) with Co = -'r+. The corresponding eigenvalue equation is 

(,]3 - -  {oJ+)lj, Co> = - j l j ,  Co) (3.52) 

For mo = j ,  we find A({) = {2j, which represents the state I j ,  j).  
For 13- = 0 and 133 4: 0, we can use the general results of  the preceding 

sections with b = 133, "r+ = 0, and -r_ = -133/131. This gives K = - ' r_  = 133/ 
131, x = 1, S+ = 1 + t (where t = IKI2), and S_ = 1. The corresponding 
analytic function is 

A(j,  k, 13; ~) = ~'-1/2(1 - "r-~) j+"~ (3.53) 

For mo = j ,  this function represents the standard coherent state I j ,  C0) with 
C0 = 133/131. The corresponding eigenvalue equation is 

(./3 + ~ffl j -) l j ,  Co) = jlj, Co) (3.54) 

For mo = - j ,  we find A({) = 1, which corresponds to the state I j ,  - j ) .  
For the degenerate case b = O, the solution of  equation (3.16) is 

( 2k 1 ) 
A(j,  h, 13; {) = dq-lt2(l -- "r{) 2j exp 133 1 - "rE (3.55) 

where "r = 213_/133 = -133 /213+.  This function is analytic only for h = 0. 
Then we obtain 

A(j,  ~, = 0, [3; {) = .N'-lr2(1 - a'{) 2j (3.56) 

This function represents the standard coherent state I j ,  Co) with Co = - ' r  and 
,N" = (1 + 1~ol2) 2j. For example, we can choose 11 = (1 - {2, - i (1  + {~), 
2{o). Then the standard CS satisfy the eigenvalue equation 

(J-  + 2{oJ3 - {~J+)lj, Co) = 0 (3.57) 

For 13_ = 133 = 0, the only normalizable solution of  equation (3.16) is A({) 
= 1, which represents the state I j ,  - j )  (that is, the standard coherent state 
with Co = 0). Analogously, for 13+ = 133 = 0, the corresponding function is 
A({) = {2j, which represents the state I j ,  j )  (that is, the standard coherent 
state with {o --+ 0% 

3.5. The SU(2) Intelligent States 

The SU(2) generalized IS were defined by Trifonov (1994) as the eigen- 
states of  the operator rlJ l - /J2 [see equation (2.15)]. In our notation, the 
generalized IS are the AES with 13 = (% - i, 0). For "I~ 2 ~/: 1, the corresponding 



SU(2) and SU(I,1) Algebra Eigenstates 1665 

analytic function is given by the particular case of  equation (3.18) with b = 
(,q2 _ 1)1/2 and 

~/~- 1 (3.58/ "r_+=__. " q ~ l  

All the results o f  Section 3.3 are valid here with K = 2a'§ x = 0, and S§ = 
S_ = 1 + IT+I 2. The generalized intelligent state is also the standard coherent  
state when m0 = - j .  The  corresponding coherent-state amplitude is t0 = 
-xT_, respectively. Since -q is an arbitrary complex  number  (excluding _ 1), 
t0 also can acquire any complex value (excluding 0 and ~).  For "q = 1, the 
generalized IS are reduced to the state I j ,  - j ) ,  which is the standard coherent  
state with C0 = 0. For "q = - 1 ,  the generalized IS are reduced to the state 
I j ,  j}, which is the standard coherent  state with t0 ---> ~.  Hence,  the standard 
set of  the SU(2) CS is a subset o f  the SU(2) generalized IS. 

We also discuss briefly three types o f  the SU(2) ordinary IS. The  Jl-J2 
IS are determined, according to equation (2.16), as the eigenstates of  the 
operator  Jl + i~J2, where ~/is a real parameter. These  states are the SU(2) 
AES with I$ = (1, i~/, 0). For  ~/2 ~ 1, the corresponding analytic function 
is given by the particular case of  equation (3.18) with b = (1 - ~/2)1/2 and 

"r• = _+ (3.59) 

All the results o f  Section 3.3 are valid here with K = 2"r+, x = 0, and S§ = 
S -  = 1 + Ix+l 2. The Jr-J2 IS coincide with the standard CS for mo = - j .  
Since ~/is real, the corresponding coherent-state amplitude C0 is real for  I~/I 
< 1 and pure imaginary for I~/I > 1. Therefore  the set of  the Jz'J2 IS and 
the standard set of  the SU(2) CS have an intersection. 

The Jr-J3 IS are determined, according to equation (2.16), as the eigen- 
states o f  the operator Jl + i~lJ3. These  states are the SU(2) AES with 13 = 
(1, 0 , / 7 ) .  For  ~/2 :/: 1, the corresponding analytic function is given by the 
particular case o f  equation (3.18) with b = (1 - ~/2)1t2 and 

"r_+ = ( i~ /_  v/1 - ~/2)-1 (3.60) 

All the results o f  Section 3.3 are valid here  with K = 2(1 - ~/2)1/2 and x = 
i~ll(1 - ~/2)1r2. Note that I'r+-r_l = 1, and therefore we can use simple expres- 
sions (3.46) and (3.47). For  ~/2 < 1, we have S§ --- S_ = 2 and h = 1. For 
~/2 > 1, we obtain h = 2~/2 + 2~('y 2 - 1) I/2 - 1. The intersection between 
the J r  J3 IS and the standard CS is obtained for  mo = +-j. In the case ~/ = 
_+ 1, we have h = b = 0, and then the corresponding analytic function is 
A(~) = N-lr2(1 +_ ig) 2j. This function corresponds to the standard coherent  
state I j ,  go) with Co = _+i. 
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T h e  J2-J3 IS are determined, according to equation (2.16), as the eigen- 
states of the operator J2 + i~lJ3. These states are the SU(2) AES with 13 = 
(0, 1, i~/). For .y2 # 1, the corresponding analytic function is given by the 
particular case of equation (3.18) with b = (1 - ~/2)1/2 and 

"r+ = ( - ' y  +_ i f f l  - ~/2)-1 (3.6t) 

All the results of  Section 3.3 are valid here with ~ = -2i(1 - .yE)lr2 and x 
= i~l/(1 - ~/2)v2. Here Ix+x_ I = l, and therefore we can use simple expressions 
(3.46) and (3.47). For ~2 ~ l, we find S§ = S_ = 2 and h = 1. For ,~/2 
1, we obtain h = 2~/2 + 2'y(~/2 - 1) 1/2 - 1. The intersection between the J~- 
J3 IS and the standard CS is obtained for m o =  -+j. In the case ~/ = -+ l, we 
have k = b = 0, and then the corresponding analytic function is A( 0 = 
,N--lr2(l _+ ~)2j. This function corresponds to the standard coherent state I j ,  
Co) with ~o = -+ 1. 

4. THE SU(1,1) ALGEBRA EIGENSTATES 

In this section we consider the AES for the SU(1,1) group, which is the 
most elementary noncompact non-Abelian simple Lie group. It has several 
series of unitary irreducible representations: discrete, continuous, and supple- 
mentary (Bargmann, 1947; Vilenkin, 1968). In the present work we discuss 
only the case of the discrete series, which has many well-known physical 
applications (Perelomov, 1986). The Lie algebra corresponding to the group 
SU(1,1) is spanned by the three operators {KI, K2, K3}, 

[/(1,/(2] = - i K 3 ,  [K2,/(3] = iK~, [1(3, K~] = iK2 (4.1) 

It is convenient to use raising and lowering operators K._ = K 1 "4- iK2 which 
satisfy the following commutation relations: 

[K3, K• = _+K_+, [K_, K§ = 2/(3 (4.2) 

The Casimir operator K 2 = K32 - K 2 - K 2 for any unitary irreducible 
representation is the identity operator times a number: K 2 = k ( k  - 1)L 
Representations of SU(1,1) are determined by a single number k; for the 
discrete-series representations this number acquires discrete values k = 1/2, 
1, 3/2, 2 . . . . .  The representation Hilbert space is spanned by the orthonormal 
basis Ik, n) (n = 0, 1, 2 . . . .  ). 

The SU(1,1) AES can be investigated by using two alternative analytic 
representations, one based on the standard CS (Perelomov, 1986), and the 
other on the so-called Barut-Girardello (BG) states (Barut and Girardello, 
1971). 
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4.1. The Standard Coherent-State Basis and the Analytic 
Representation in the Unit  Disk 

The standard set of the SU(1,1) CS is obtained for the lowest state Ik, 
0) chosen as the reference state. The isotropy subgroup H = U(1) consists 
of all group elements h of the form h = exp(iSK3). Thus hlk, O) = exp(i~k)lk, 
0). The quotient space is SU(1,1)IU(1) (the upper sheet of the two-sheet 
hyperboloid), and the standard coherent state is specified by a unit pseudo- 
Euclidean vector 

n = (sinh • cos q~, sinh X sin ~0, cosh X) (4.3) 

Then an element f l  of the quotient space can be written as 

[l  -- D({) = exp(~K+ - {*K_) (4.4) 

where ~ = -(X/2)e -i~*. The standard SU(I,1) CS are given by 

Ik, {> = D(01k, 0> = exp({K+ - {*K_)lk, 0) = (1 - 1{12) k exp({K+)lk, 0) 
(4.5) 

where ~ = (~/10) tanhl~l = -tanh(xI2)e -i*. The parameter ~ is restricted by 
I~1 < 1. The expansion of the Ik, ~) states in the orthonormal basis is 

F(2k + n)] It2 
Ik, [) = (1 - [~12)k ,=o ~ t ~-v I '~k ' )  -] ["lk, n) (4.6) 

The SU(1,1) CS are normalized, but they are not orthogonal to each other: 

(k,/~llk,/~2) = (1 - l~ll2)k(l -- 1~212)k(1 -- ~ 2 )  -2k (4.7) 

The identity resolution is (for k > 1/2) 

f dlx(k, ~) Ik, i~)(k, El = I, dlx(k, ~) - - -  
2 k -  1 d2~ 

"tr (1 --1~12) 2 
(4.8) 

and for k = 1/2 the limit k ---> 1/2 must be taken after the integration is 
carded out in the general form. For any state I*) = ~ = 0  c, lk, n) in the 
Hilbert space, one can construct the analytic function 

[-F(2k + n)] ta 
f ( [ )  = (1 - 1[12)-k(k, [* l~)  = .=o C"L  r (4.9) 



1668 Brif 

Since ICI < 1, this analytic representation is referred to as the representation 
in the unit disk. The expansion of the state IV) in the standard coherent-state 
basis is given by 

IV) = f d~(k, C) (1 - ICI2)y(i~*)lk, C) (4.10) 

(Xltl~) = f d~(k, 0 (1 - ICI2)Ulf(C*)I 2 < oo (4.11) 

The coherent state Ik, Co) is represented by the function 

~;(k, Co; C) = (1 - ICI2)-k(k, C*lk, to) = (1 - ICol2)k(l - Co0 -2k 
(4.12) 

The operators K+ and/(3 act in the Hilbert space of analytic functions f ( 0  
as first-order differential operators 

d d d 
K+ = C2 ag ~ + 2k{, K_ = gd-:' K3 = C a~ ~ + k (4.13) 

4.2. The General Case 

The eigenvalue equation for the SU(1,1) AES is 

(13.K)lk, k, 13) = (131Kl + 132K2 -I- 133K3)lk, ~., 13) = ~.[k, )k, 13) 
(4.14) 

Some particular cases of  this equation were considered by Barut and Girar- 
dello (1971), Lindblad and Nagel (1970), Solomon (1971), and Nagel (1995). 
By introducing the analytic function 

A(k, k, 13; 0 = (1 - 1{12)-k(k, {*lk, k, 13) (4.15) 

we derive the differential equation 

d 
[13+ + 133C + 13-C 21 ~ A(k, k, 13; C) + [2k13-C + k133 

- h]A(k, h, 13; 0 = 0 (4.16) 

where we have defined 13_+ = (131 - i132)/2. Let us also define 

b = x/132 - 132 _ 132 (4.17) 

Admissible values of 13 and h are determined by the requirement that the 
function A(k h, 13; 0 must be analytic in the unit disk. We will see that the 
noncompactness of the SU(1, l) group leads to a rich structure that is absent 
in the SU(2) case. In the general case b # 0, there are three classes of  
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algebra elements (13- K). The first class consists of elements with a continuous 
spectrum (no restrictions on h). Elements in the second class have a discrete 
equidistant spectrum: in one subclass h = (k + / ) b  and in the other subclass 
h = - ( k  + /)b (where l = 0, 1, 2 . . . .  ). The third class includes elements 
that do not have any normalizable eigenstate. In the degenerate case b = 0, 
there are two classes of algebra elements. The first class consists of elements 
with a continuous spectrum (no restrictions on h), while the second class 
includes elements that do not have any normalizable eigenstate. In the degen- 
erate case there are no algebra elements with a discrete spectrum. 

We first consider the general case b :/: 0. For 13+ :~ 0, the solution of 
equation (4.16) is 

A(k, h, 13; C) = At-in( 1 + 'r-C)-k+r( 1 -t- "f+C) - k - r  (4.18) 

where A r is a normalization factor, and we use the notation 

x+_ = (61 - i~z ) l (~3  +- b )  (4.19) 

r = h/b (4.20) 

Now we analyze the analyticity condition for the function A(C) of equation 
(4.18). If I'r+l < 1 and I'r_l < 1, then there are no restrictions on h (i.e., the 
corresponding algebra elements have a continuous complex spectrum). If I-r+l 
< 1 and I'r_l --> 1, then the analyticity condition requires r = k + l (where 
l = 0, 1, 2 . . . .  ), i.e., the spectrum is discrete and equidistant: 

k = (k + / ) b  (4.21) 

If  I'r+l -> 1 and I'r_l < 1, then the analyticity condition requires r = - ( k  + 
/), and once again the spectrum is discrete and equidistant: 

h = - ( k  + / ) b  (4.22) 

If  I'r+l _> 1 and I'r_l -> 1, then the function A(C) of equation (4.18) cannot 
be analytic in the unit disk for any value of h. This region in the parameter 
space is forbidden, i.e., the corresponding algebra elements have no normaliz- 
able eigenstates. Note that there are algebra elements whose eigenstates are 
unnormalizable in sense of equation (4.11), but these states can be orthonor- 
malized by the delta function. For example, such generalized orthonormality 
relations exist for the eigenstates of the operators K~ and K2, for which I'r+l 
= I'r_l = 1 (Lindblad and Nagel, 1970; Nagel, 1995). In our notation, these 
operators formally belong to the forbidden region of the parameter space. 
The structure of the parameter space is described in Fig. 1. 

We can compare the function A(k, h, 13; C) of equation (4.18) with the 
function 9;(k, C0; C) of equation (4.12), which represents the standard coherent 
state Ik, C0). We find that the algebra eigenstate Ik, h, 13) belongs to the 
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l'r ~ I 

~, = - ( k + l )  b 
forbidden region: 

there are no normalizable 
algebra eigenstates 

/ 
~. =(k+l) b I 

! 

Fig. 1. The structure of the parameter space for the SU(1,1) AES in the general case b ~ O. 

standard set of  the CS when r = _+k, i.e., )~ = +_kb. Then Co = - ' r+,  
respectively. The condition IC01 < 1 is equivalent to the analyticity condition: 
I'r+l < 1 for r = _+k, respectively. The normalization factor A r in this case 
is identified as A r = (1 - IC012) -2k. For example, we can choose [3 to be a 
unit pseudo-Euclidean vector [3 = n = (sinh • cos to, sinh X sin tO, cosh • 
and r = k. Then 

sinh X e - "  t a n h ( ~ ) e - "  (4.23) 
Co= c o s h x  + 1 - 

This means that the standard CS form a subset of  the AES with the correspond- 
ing eigenvalue equation 

[(sinh X cos tO)Kt + (sinh • sin tO)K2 + (cosh x)K3]lk, Co) (4.24) 
= klk, Co) 

This result can be found by acting with D(~)  on both sides of equation K31k, 
0) = k k, 0). 

4.3. The Expansion in the Orthonormal Basis and Quan tum Statistics 

In the allowed region of  the parameter space, we can use equation (3.26) 
for expanding the function A(k, k, [3; C) of equation (4.18) into the power series 

A(k, h, [3; C) = Ar-lr2 ~ /~n-k+r-n'-k-r-n)(X)(KC) n (4.25) 
n = 0  



SU(2) and SU(I,I) Algebra Eigenstates 1671 

where we have defined 

w, = .r+ - "t_ = -2b/([31 + i[~2) (4.26) 

x = ('r_ + "t+)/(x_ - "r+) = [3~b (4.27) 

Comparing the expansion (4.25) with the general formula (4.9), we find the 
decomposition of the AES over the orthonormal basis: 

Ik, k, [$) = X -1/2 ~ -k+r-n'-k-r-n)(x)Knlk, n) 
n=0  

(4 .28)  

The normalization factor is given by 

Ar = ~ n! F(2k)iptzk+r_n_k_,_n)(X)12t ~ (4.29) 
n=O F(2k + n) 

where t = IKI 2. In what follows we will consider the case of real r. The 
summation theorem for the Jacobi polynomials [Srivastava and Manocha, 
1984, Section 2.3, equations (60), (62)] can be written in the form 

V n!_r(~__+_ Y!  i~ :~ - , . - , -n ) (x )12e  = S;~S-" v. ~; ~ + v; - t 
~0  F(~ + v + n) 

(4.3O) 

for t~ + v > 0. Here, we have defined 

S• = 1 - I x  + 112t/4 = 1 -I'r7_l 2 (4 .31)  

Therefore, we obtain the closed expression for the normalization factor 

3 f =  S + k + r S = k - ~ k + r , k - r ' , 2 k ; - S - ~ - )  (4.32) 

If I'r_l >-- 1 or I'r+l > 1 [i.e., r = k + l or r = - ( k  + /), respectively], we 
can use the relation between the hypergeometric function and the Jacobi 
polynomials (Erd61yi et al., 1953, Vol. 2, Section 10.8). For l a nonnegative 
integer and a > - 1 ,  this relation can be written in the form 

_ l! F(~t + 1) p~.13)( 1 _ 2z) (4.33) F ( - l ,  l + ot + ~ + 1; et + 1; z) F ( l + o t +  1) 

Then we obtain 

l! F(2k) ~,/c_2k_lDt2k_l,O): 2t 
Ar - F(2k + / )  "ni~"i' - - I  \'1 + ~ ]  (4.34) 
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where (i, i') = (+,  - )  for r = k + l and (i, i') = ( - ,  +)  for r = - ( k  + 
/). It can be easily verified that for r = ___k (i.e., l = 0), these formulas reduce 
to the corresponding results for the standard coherent state Ik, C0) with C0 = 
--r• respectively. 

Analogously to the SU(2) case, the above analytic expressions can be 
used for calculations of quantum statistical properties of the SU(1,1) AES. 
Here we derive analytic expressions for moments of  the generator K3. By 
using the property K31k, n) = (k + n)lk, n) and formula (4.29), we can express 
moments of  K3 over the AES as derivatives of df with respect to t: 

t OAr 
(K3) - d~ Ot + k (4.35) 

t2 o2,~ t o,~ ( t o . ~  2 
(AK3)2 - ,N" 0--~- + ,N" Ot \ . ,  Ot ] (4.36) 

By using the formula (Erd~lyi et al., 1953, Vol. 1, Section 2.1.2) 

dF(a, b; c; z) _ ab 
F(a + 1, b + 1; c + 1; z) (4.37) 

dz c 

and the hypergeometric equation, we obtain exact analytic expressions for 
the moments of K3: 

(k 2 -- r2)yt (g3)  = - k Y  + r(S+ - S_) + 0 
s~s_ ~-gr_ 

I - S _  
(AK3) 2 = ( k +  r ) ~ +  ( k -  r ) - -  

(k 2 -- r2)t ( S+S-y2 

 s2V_ Tt 

(4.38) 

1 - S+ (lfl" - r2)y2t 
s2+ (s+s_ + t)s2+s 2_ 

2kY 2 + Z~O (k2 - r2)2y2t2 02 
4k2S4+$4_. (4.39) / 

Here, Y and Z are given by equations (3.42) and (3.43), respectively [but 
with S_+ of equation (4.31)], and O is defined as 

O = k + r , k - r ; 2 k ; -  

X F ( k + r +  1, k - r +  1 ; 2 k +  1 ; - S - ~ _  ) (4.40) 

Note that the transition between the SU(2) and SU(1,1) cases can be formally 
performed by the interchange 

~,~ _ r 2 

j ~ - k ,  mo *-* r, t *-* - t ,  (j + Im01)~ *-* ~ O (4.41) 
2k 
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For r = +-(k + /) with l > 0, by using relation (4.33), we find 

O =  . ~  [p~2t_l,O)(1 + 2t ~]-lp~2k|,)(1 + S--~-) (4.42) 
s+s_l J 

For r = -+k (i.e., l = 0), we obtain O = 0, and then we recover the known 
results for the SU(1,1) CS (Wodldewicz and Eberly, 1985). The expressions 
for (K3) and (AK3) 2 are significantly simplified in the case Y = 0. This 
condition is satisfied if equation (3.45) holds, e.g., for 131 = a[32, where a is 
any real number (including the case when 131 or 132 vanishes). Then we obtain 

h + l  
(K3} = h---~- 1 r (4.43) 

2kh (k2 - r2)h2t O (4.44) 
(AK3)2 = (h - 1) - - - - - - ~  + k(h - 1) 4 

where h is defined by equation (3.48). Note that the curve Ix_l = 1/1%1 (that 
is, Y = 0) lies in the allowed region of  the parameter space (more specifically, 
in the discrete-spectrum region), except for the forbidden point I'r_l = I'r+l 

4.4. Some Special Cases 

For 13+ = 0 and 133 :#: O, we obtain "r_ ---> o% so we cannot use formula 
(4.18). In this case the solution of  equation (4.16) is 

A(k, h, I~; t)  = )r + a'+t) -2k-I (4.45) 

where % = 1311133 and l = - k  + M133. The condition of  the analyticity 
requires I = 0, 1, 2 . . . .  [i.e., the spectrum h = (k +/)[33 is discrete] and I'r+l 
< 1. The decomposition over the orthonormal basis and quantum statistical 
properties of  the AES can be obtained in this case by expanding the function 
(4.45) into a power series. We find 

Ik, k, [3) = N -lr2 ,. ,  ,,=t ~ F(2k + (n - /)'-'''~ Ik, n) (4.46) 

+ 

dq = F(I + 1, 1 + 2k; 1; I%12) = (1 - .+ / - t  k 1 - I'1"+12] 

(4.47) 

For l = 0, the function (4.45) represents the standard coherent state Ik, to) 
with ~0 = - % .  The corresponding eigenvalue equation is 

(K3 - toK.)lk, t0} = klk, to> (4.48) 
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For 13_ = 0 and 133 ~ 0, we can use the general results of Sections 4.2 
and 4.3, with b = 133, a'+ = 0, and x_ = 133/131. This gives K = - ' r _  = -133/ 
131, x = 1, S§ = 1 - t (where t = IKI2), and S_ = 1. The corresponding 
analytic function is 

A(k, k, 1$; 0 = 3f-l/2( 1 + a ' -0  -t+r (4.49) 

where r = h/133. For la'_l < 1, this function is always analytic and h can 
take any complex value. In the special case r = - k  (i.e., h = -133k), the 
function (4.49) represents the standard coherent state Ik, C0) with C0 = -1"_. 
The corresponding eigenvalue equation is 

(K3 - CfflK-)lk, C0) = - k l k ,  Co) (4.50) 

For II"_ I -> 1, the analyticity condition requires r = k + l [i.e., the spectrum 
h = (k + /)133 is discrete]. For r = k (l = 0), we have A(O = 1, which 
represents the state Ik, 0). 

We next consider the degenerate case b = 0. If  13+ vanishes, then 133 
vanishes, too, and the corresponding algebra element is just K§ It can be 
easily verified that this operator does not have any eigenstate. If 13_ vanishes, 
then 133 vanishes, too, and the corresponding algebra element is just K_. Its 
eigenstates are represented by the analytic function 

A(k, h, 1~; C) = -N'-lt2 exp(kO (4.51) 

The eigenvalue h can take any complex value. By using equation (4.11), we 
find the normalization factor 

,Y = F(2k)I2t_l(2lkl)k t -v '  (4.52) 

where Iv(x) is the v-order modified Bessel function of the first kind. The 
eigenstates of the lowering operator K_ were first constructed by Barut and 
Girardello (1971). The analytic representation based on these states will be 
discussed in Section 4.6. 

If b = 0 and 133 4: 0, the solution of  equation (4.16) is 

A(k, h, 13; 0 = X-It2(1 + rC) -2k exp 133 1 + "r 

where 

213- 133 
x - - -  - (4.54) 

133 213+ 

The condition of the analyticity requires I'rl < 1. If this condition is satisfied, 
h can take any complex value. The decomposition of  the corresponding 
AES over the orthonormal basis is obtained in Section 4.6 by using the 
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Barut-Girardello analytic representation [see equations (4.81) and (4.82)]. 
Analogously to the general case, there are operators whose eigenstates are 
unnormalizable in sense of equation (4.11), but these states can be orthonor- 
malized by the delta function. An example is the operator K~ +/(3,  for which 
I'rl = 1 (Lindblad and Nagel, 1970; Nagel, 1995). In the special case k = 
0, the analytic function is 

A(k, k = 0, 13; ~) = .N'-1/2(1 + a'~) - ~  (4.55) 

This function represents the standard coherent state Ik, go) with go = -a" and 
N = (1 - 1~012) -2~. For example, we can choose 13 = (1 + ~02, - i (1  - g2), 
-2g0). Then the standard CS satisfy the eigenvalue equation 

(K_ - 2g0K3 + g2K-)lk, g0) = 0 (4.56) 

4.5. The SU(1,1) Intelligent States 

The SU(1,1) generalized IS were defined by Trifonov (1994) as the 
eigenstates of the operator "qKl -- iK2 [see equation (2.15)]. In our notation, 
the generalized IS are the AES with 13 = ('q, - i ,  0). For .q2 :/: 1, the 
corresponding analytic function is given by the particular case of equation 
(4.18) with b = (1 - ~12) It2 and 

_ / 1  - n (4.57) 
~-+ = +X / i Y n  

The condition of the analyticity requires 

1 - ' q  < l r  (4.58) 

In the allowed region of the parameter space (Re ~1 > 0), all the results of 
Section 4.3 are valid, with K = 2"r§ x = 0, and S§ = S_ = 1 - I'r§ 2. For 
~ = 0, the algebra element is/(2, whose eigenstates do not possess a finite 
norm. The generalized intelligent state is also the standard coherent state 
when r = _+k. The corresponding coherent-state amplitude is g0 = -x •  
respectively. Since ~1 is a complex number, go can acquire any complex value 
in the unit disk (excluding zero, because ~ 4: 1). For ~1 = 1, the generalized 
IS are reduced to the BG states (the eigenstates of K_). When the eigenvalue 
vanishes, k = 0, the BG states degenerate to the state Ik, 0}, the standard 
coherent state with g0 = 0. Therefore, the standard set of the SU(I,1) CS is 
a subset of the SU(1,1) generalized IS. 

We also briefly discuss three types of the SU(1,1) ordinary IS. The 
Kt-K2 IS are determined, according to equation (2.16), as the eigenstates of 
the operator K1 + i'yK2, where ~/is a real parameter. These states are the 
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SU(1,1) AES with ~ = (1, i~/, 0). For ~/ = 1, the solution does not exist, 
since the raising operator K§ does not have any eigenstate. For ~/ = - 1, we 
obtain the BG states. For  ~/2 ~ 1, the corresponding analytic function is given 
by the particular case of  equation (4.18) with b = (~/2 _ 1)It2 and 

+ 1 
x~- = - - - [ •  (4.59) 

The  condition of  the analyticity requires 

~ + 1  
< 1 r ~t < 0 (4.60)  

All the results o f  Section 4.3 are valid here with K = 2"r§ and x = 0. We 
also find that S+ = S_ = 21~/1/(1 + I~/I) for I~/I < 1, and S+ = S_ = 2/(1 + 
I~/I) for  I~1 > 1. For  ~ / =  0, the algebra element  is g t ,  whose eigenstates do 
not possess a finite norm. The KrK2 IS coincide with the standard CS for r 
= - k .  The corresponding coherent-state amplitude is C0 = -a-• respectively. 
Since ~/ is real, C0 is real for  I~/I > 1 and pure imaginary for I~/I < 1. 
Therefore  the set o f  the KI-K2 IS and the standard set o f  the SU(1,1) CS 
have an intersection. 

The Kl-K3 IS are determined, according to equation (2.16), as the eigen- 
states o f  the operator K~ + i~lK3. These states are the SU(1,1) AES with 13 
= (1, 0, i~/). The  corresponding analytic function is given by the particular 
case o f  equation (4.18) with b = i(~/2 + 1) in and 

r• = - i ( 'v  - ~/~2 + 1)-~ (4.61) 

The analyticity condition requires r = k + l for  I'r_l > 1 (i.e., for  ~r > 0), 
and r = - ( k  + /) for  I'r+l > 1 (i.e., for  ~ / <  0). Here, as usual, l = 0, 1, 2, 
. . . .  This condition can be expressed in the form 

h = i(sgn ~)(k +/)x/~/2 + 1 (4.62) 

(For ~/ = 0, we have I'r+l = I'r_l = 1, and the algebra element  is K~ with 
unnormalizable eigenstates.) All the results o f  Section 4.3 are valid here with 
K = -2i(~/2 + 1) In a n d x  = ~//(~/2 + l)lt2. Note that I'r§ = 1, and therefore 
we can use simple expressions (4.43) and (4.44), with h = 2~/2 + 2(~/2 + 
1) In + 1. The intersection between the K r K  3 IS and the standard CS is 
obtained for l = 0, i.e., h = +_ik(~l 2 + 1) In. The corresponding coherent-  
state amplitude is Co = -a ' •  respectively. Since ~/is real, Co is pure imaginary. 

The K2-K3 IS are determined, according to equation (2.16), as the eigen- 
states of  the operator K2 + i~lK3. These states are the SU(I ,1)  AES with 
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I~ = (0, 1, i~/). The corresponding analytic function is given by the particular 
case of equation (4.18) with b = i(~2 + 1)it2 and 

"r_+ = -(~/+_ x/~/2 + 1) -1 (4.63) 

The analyticity condition here is the same as in the preceding case ]see 
equation (4.62)]. All the results of Section 4.3 are valid here with K = - 2 ( ~  2 
+ 1) 1/2 and x = ~//(~/2 + 1)lcz. Once again, Ix+a'_l = 1, and therefore we can 
use simple expressions (4.43) and (4.44), with h = 2~/2 + 2(~/2 + 1) 1t2 + 1. 
The intersection between the K2-K3 IS and the standard CS is obtained for l 
= 0, i.e., h = +_ik(',l 2 + 1) 1/2. The corresponding coherent-state amplitude 
is [0 = - r •  respectively. Since ~/is real, [o is also real. 

4.6. The Barut-GirardeUo Analytic Representation 

The BG states (Barut and Girardello, 1971) are defined as the eigenstates 
of the lowering operator K_: 

K_lk, z) = zlk, z) (4.64) 

where z is an arbitrary complex number. The expansion of these states over 
the orthonormal basis is 

Zk- 1/2 
Ik, z) - ~ z" Ik, n) (4.65) 

x/12k- I(21zl) n=0 x/n! F(2k + n) 

The BG states are normalized, but they are not orthogonal to each other: 

(k, zdk, z2) = x/i~_l(21zll)12k_l(21Z21 ~ (4.66) 

The identity resolution is 

I dp.(k, z) Ik, z)(k, zl = I 

dp~(k, z) = 2 K2k- l(21zl)12k-1(21zl) dZz (4.67) 
'IT 

where K~(x) is the v-order modified Bessel function of the second kind. Thus 
the BG states form an overcomplete set. Therefore, for any state I~) = 
~,,~=o c,,Ik, n) in the Hilbert space, one can construct the analytic function 

x/12k-l(21zl) Cn Z n (4.68) 
f(Z) -- Zk_lt 2 (k, z*l~) = ~":'--0= x/n! F(2k + n) 
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Then the state I~) can be represented in the BG basis 

I (z,lk_la 
I~) = dp,(k, z) ,fl2k_l(21zl) f(z*)lk, Z) (4.69) 

I Izl~-t If(z*)l 2 < oo (4.70) 
(~1~)  = dp,(k, z)/2k-l(21zl) 

The standard coherent state Ik, [)  is represented by the function 

~;(k, ~; z) - x/12k-l(21zl) (1 -- l~12) k 
Zk_l/2 (k, z*lk, ~) - " ~  exp(~z) (4.71) 

As has been recently shown (Brif et al., 1996), the BG representation and the 
analytic representation in the unit disk are related through a Laplace transform. 

The operators K+ and/('3 act in the Hilbert space of analytic functions 
f (z)  as linear differential operators 

d d E d 
K+ = z, K_ = 2k~z z + Z ~ z  2, /('3 = Z~z z + k (4.72) 

By introducing the analytic function 

,/tz~_,(21zl) 
A(k, h, is; z) - z~_l/2 (k, z*lk, k, is) (4.73) 

we can convert the eigenvalue equation (4.14) for the SU(I,1) AES Ik, h, 13) 
into the second-order linear homogeneous differential equation 

d 2 d 
[p+z] ~ z  2 A(k, k, 13; z) + [133z + 2kl3+] ~ A(k, k, 13; z) 

+ [13-z + k133 - k]A(k, k, is; z) = 0 (4.74) 

This equation can be transformed into the Kummer equation for the confluent 
hypergeometric function ~(a;  c; x) or into the Bessel equation, depending 
on the values of the parameters. Using the general results of Erd61yi et al. 
(1953, Vol. 1, Section 6.2), we find the solution of  equation (4.74). 

We first consider the general case b :/: 0. For 13+ :/: 0, we have two 
independent solutions: 

A(k, k, is; z) = exp( - ' r •  ..V- r; 2k; -7-bz/13+) (4.75) 

/~(k, h, is; z) = exp(--'r• 7- r; 2/~; 7-bz/13+) (4.76) 

where "r• is defined by equation (4.19), r = h/b, and/~ = 1 - k. The first 
solution A is always analytic, but the second solution/~ is not; except for k 
= 1/2 when the two solutions coincide. [Another special case is k = 1/4 and 
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/~ = 3/4 (or vice versa). These representations do not belong to the discrete 
series, but they occur for the so-called two-photon realization of the SU(1,1) 
Lie algebra. This realization is important in quantum optics, as it provides 
the mathematical model of  squeezing of the single-mode quantized light field. 
The corresponding analytic representations have been recently studied in 
detail (Brif et al., 1996; Brif, 1996).] Here, we consider only the discrete- 
series representations (k is a positive integer or half-integer) and hence use 
only the first solution A(z). Also, the solution should be normalizable, i.e., 
the integral in equation (4.70) must be convergent. The convergence of this 
integral can be easily analyzed by using the asymptotic expansion of the 
integrand. It is remarkable that the normalization condition for the function 
A(z) of equation (4.75) is equivalent to the analyticity condition for the 
function A(g) of equation (4.18) [see the discussion after equation (4.20) and 
Fig. 1]. Actually, these functions are related through a Laplace transform 
(Brif et al., 1996). The upper and lower signs in equation (4.75) are equivalent, 
because the confluent hypergeometric function can be written in two equiva- 
lent forms, which are related by Kummer's transformation (Erd61yi et al., 
1953, Vol. 1, Section 6.3): 

�9 (a; c; x) = e ~ ( c  - a; c; - x )  (4.77) 

Kummer's transformation in equation (4.75) is equivalent to the replacement 
b ~ - b .  For h = _kb, the AES coincide with the standard CS. Then equation 
(4.75) reads 

A(k, h, 13; z) = ~-1t2 exp(- ' r•  (4.78) 

The corresponding coherent-state amplitude is (,o = -x~-. 
In the case [3+ = 0 and [33 :/: 0, the solution of equation (4.74) is 

A(k, h, [3; z) = dr exp ( - ' r~ )  (4.79) 

where "r§ = 131/133 and l = - k  + MI33. The condition of the analyticity 
requires l = 0, 1, 2 . . . . .  and the normalization condition is I'r§ < 1. This 
is in full agreement with the analyticity condition for the function A(~) of 
equation (4.45). 

We next consider the degenerate case b -- 0. If 13§ vanishes, equation 
(4.74) does not have any nontrivial analytic solution, and consequently the 
operator K§ does not have any eigenstate. For 13+ :/: 0, the analytic solution 
of equation (4.74) is 

A(k, k, 13; z) = d~-l/2(h'z)ll2-kl2k-l(2~Z) exp(- ' rz)  (4.80) 

where "r is defined by equation (4.54) and k'  = k/[3§ The normalization 
condition requires I'rl < 1, in accordance with the analyticity condition for 
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the function A(~) of equation (4.53). The decomposition of the AES with b 
= 0 over the orthonormal basis and the corresponding normalization factor 
can be obtained by expanding the analytic function A(z) of equation (4.80) into 
a power series. By using generating functions for the Laguerre polynomials 
L~(x) (Erd61yi et aL, 1953, Vol. 2, Section 10.12; Srivastava and Manocha, 
1984, Section 2.5), we find 

Ik, h, 13) = A r-lr2 ~._ L~ -1 (-'r)"lk, n} (4.81) 
n=0 F(2/~- n) 

Ih'l '-2k ( 2 1 h ' l  ~ [ 21xl_2Re(k'/-01 
.N" = f -- ~-~ Izk-t i -- I'rl 2] exp 1 -- I-rl 2 J (4.82) 

In the special case k = 0, the corresponding AES are the standard CS Ik, 
to) with C0 = - 'r .  If 13- vanishes, 133 vanishes, too, and the corresponding 
algebra element is just K_. Then equation (4.80) reads 

A(k, k, 13; z) = ,N "-It2/2k-1(2V/-~) (kZ)k_lt 2 (4.83) 

This function represents the BG state Ik, Zo} with z0 = k, and the normalization 
factor is 

,N" = z~-Ztlz~_~(21z01 ) (4.84) 

One can also use the general solution (4.75) in order to consider the 
particular case of the SU(1,1) IS. The BG representation of the SU(I,I) 
generalized IS was first obtained by Trifonov (1994). His results can be 
reproduced by taking 13 = (xl, - i ,  0), which corresponds to the algebra element 
"qK1 - iK2. It is not difficult to obtain also the BG analytic representation for 
different types of the SU(1,1) ordinary IS. 

5. CONCLUSIONS 

In this paper we have shown that the algebra-eigenstate formalism unifies 
the descriptions of various kinds of states within a common frame. This 
clarifies relations between different types of states and the physical basis of 
their mathematical properties. The use of an analytic representation enables 
us to write a linear homogeneous differential equation that determines all the 
kinds of the AES. Often, this is a first-order equation that can be immediately 
integrated, and then we derive analytic functions representing the AES. These 
functions yield all the information about the AES. For example, we have 
presented here a method for the calculation of exact analytic expressions for 
quantum statistical properties of the AES. This method should be useful in 
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physical applications, especially in the field of quantum optics. On the other 
hand, the analytic representations provide us with a simple and effective way 
to find different subsets of the AES and to analyze the relations between 
them. We have determined, for instance, the conditions to obtain the standard 
CS and the generalized and ordinary IS. 

In the present work we have concentrated on the most elementary simple 
Lie groups, but the theory of the AES is in general applicable to arbitrary Lie 
groups describing a wide class of quantum systems. Therefore, the algebra- 
eigenstate formalism can find applications in many fields of modern quantum 
physics. We mention, for example, quantum optics, where the AES can 
provide a general view of the problem of squeezing with practical applications 
to the reduction of quantum fluctuations and the improvement of the accuracy 
of interferometric measurements. 
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